n→π* Interactions Engender Chirality in Carbonyl Groups

نویسندگان

  • Amit Choudhary
  • Robert W. Newberry
  • Ronald T. Raines
چکیده

An n→π* interaction stems from the delocalization of the electron pair (n) of a donor group into the antibonding orbital (π*) of a carbonyl group. Crystallographic analyses of five pairs of diastereoisomers demonstrate that an n→π* interaction can induce chirality in an otherwise planar, prochiral carbonyl group. Thus, a subtle delocalization of electrons can have stereochemical consequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signatures of n→π* interactions in proteins.

The folding of proteins is directed by a variety of interactions, including hydrogen bonding, electrostatics, van der Waals' interactions, and the hydrophobic effect. We have argued previously that an n→π* interaction between carbonyl groups be added to this list. In an n→π* interaction, the lone pair (n) of one carbonyl oxygen overlaps with the π* antibonding orbital of another carbonyl group....

متن کامل

Effects of structure and number of Heteroatom on the π-π stacking interactions of benzene with N-substituted coronenes: A theoretical study

Stability of the π-π stacking interactions in the Ben||N-substituted-coronene complexes was studied using the computational quantum chemistry methods (where Ben is benzene and || denotes π-π stacking interaction, and N-substituted-coronene is coronene molecule which substituted with different number of N atoms). The results reveal simultaneous effects of structure and number of Heteroatom on th...

متن کامل

The n→π* Interaction

The carbonyl group holds a prominent position in chemistry and biology not only because it allows diverse transformations but also because it supports key intermolecular interactions, including hydrogen bonding. More recently, carbonyl groups have been found to interact with a variety of nucleophiles, including other carbonyl groups, in what we have termed an n→π* interaction. In an n→π* intera...

متن کامل

n→π* Interactions Are Competitive with Hydrogen Bonds.

Because carbonyl groups can participate in both hydrogen bonds and n→π* interactions, these two interactions likely affect one another. Herein, enhancement of an amidic n→π* interaction is shown to reduce the ability of β-keto amides to tautomerize to the enol, indicating decreased hydrogen-bonding capacity of the amide carbonyl group. Thus, an n→π* interaction can have a significant effect on ...

متن کامل

13C NMR Reveals No Evidence of n−π* Interactions in Proteins

An n = π* interaction between neighboring carbonyl groups has been postulated to stabilize protein structures. Such an interaction would affect the (13)C chemical shielding of the carbonyl groups, whose paramagnetic component is dominated by n = π* and π = π* excitations. Model compound calculations indicate that both the interaction energetics and the chemical shielding of the carbonyl group a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014